There is something special about photography. It can be as bland as yesterday's toast or something that can stir people for decades. Matthew Brady did it during the Civil War. Ansel Adams did it with his nature photography. Albert Eisenstaedt did it with his photos from World War Two. Dorothea Lang's photos provided graphic detail of the suffering during the Great Depression. More recently, Steve McCurry photographed “The Afghan Girl” and many others helping people better “see” the world for National Geographic. Each has that unique talent to capture an image that can literally change the world.

One of Iowa's own is just such a photographer. Robert Sabo came aboard when the ship was in commission during the 1980s. On many occasions he was able to document navy life aboard Iowa in ways few could manage. His work was featured in navy publications and was judged as superior in almost every contest he entered. Some of his best work was when the explosion occurred in 1989. All of it was sent to the investigation and will probably never be seen, but each image was a testament to the difficult and desperate work the crew performed that day.

Bob currently is a staff photographer for the New York Daily News. I saw him last year with his family in Norfolk. The photos he took of our “PAO Reunion” showed he has not lost his touch.

I am featuring several of his photographs and their original captions in this issue. Many will probably remember seeing these images from 25 years ago. That shows you how good his photography is.

Thanks Bob.
CLEANING THE BARRELS - Battleship IOWA - 1989
Sailors take a break while cleaning the barrels of Turret No. 2 aboard the battleship USS IOWA (BB-61) June 30, 1989 as she transits the Baltic Sea from Kiel, Germany to Portsmouth, England.
Photo by Robert Sabo

STEEL BEACH - Battleship IOWA - 1987
Crew members take a break and sunbathe on the quarterdeck aboard the battleship USS IOWA (BB-61) July 8, 1987 as the ship participated in FLEETEX 3-87 in Western Atlantic.
Photo by Robert Sabo

ANGELS WITH DIRTY FACES – Battleship IOWA – 1988
Leonard Erwine and Michael Mowry clean the insides of one the ship's massive boilers aboard Battleship IOWA (BB-61).
Photo by Robert Sabo
MORNING WATCH - Battleship IOWA - 1987
A U.S. Marine patrols the deck of Battleship Iowa (BB61) as she passes through the Suez Canal in the early morning hours of November 25, 1987.
Photo by Robert Sabo

TAPS TAPS - Battleship IOWA - 1989
While one sailor sleeps, another reads a book while lying in his bunk aboard the battleship USS IOWA (BB 61) October 23, 1989 on the eve before arriving in Ajaccio, Corsica.
Photo by Robert Sabo

TRABAJO FIESTA- Battleship IOWA - 1989
Sailors pass along boxes full of provisions while on a working party aboard the battleship USS IOWA (BB 61) September 18, 1989 in the Mediterranean Ocean near Spain as part of Exercise Display Determination.
Photo by Robert Sabo
LONGEST ROUND - Battleship IOWA - 1989
USS IOWA (BB 61) fires the longest 16-inch round in history January 26, 1989 at Vieques Island in Puerto Rico. The projectile traveled 23.4 nautical miles for a first round hit on target. Days later, the battleship pulled into New Orleans to celebrate Mardi Gras.
Photo by Robert Sabo
A DIM VIEW – Battleship IOWA – 1988
Damage Controlman Tim Wilber and his crew wield cutting torches and sledgehammers to make way for new workspaces aboard Battleship IOWA (BB-61). Photo by Robert Sabo — with Tim Wilber.

POLLYWOGS – Battleship IOWA – 1987
Men crossing the line for the first time, called pollywogs, are doused with water in their uniform of the day, dungarees dawed inside and backwards, as the Battleship Iowa (BB61) crosses the equator on her way to Diego Garcia December 9, 1987 in the Indian Ocean. Photo by Robert Sabo
SLEDGEHAMMER – Battleship IOWA – 1988
Deep in the darkest confines of the ship, Boiler Technician John Cheslak helps run engineering from the area known as “The Hole” aboard Battleship IOWA (BB-61).
Photo by Robert Sabo — with John Cheslak.

HEAVY METAL THUNDER - Battleship IOWA - 1987
An aerial port bow view of the battleship USS IOWA (BB-61) firing its Mark 7 16-inch/50-caliber guns to starboard during a live-fire exercise October 1987 in the Aegean Sea. The aircraft carrier USS SARATOGA (CV-60) and other ships in the battle group conduct an underway replenishment in the background.
Photo by Robert Sabo

MILLER TIME - Battleship IOWA - 1988
Chief Gunners Mate J.C. Miller No. 3 sits inside Turret Three, a Mark 7 16-inch/50-caliber gun turret aboard the battleship USS IOWA (BB-61) October 1988 as she is moored near Guantanamo Bay Naval Base in Guantanamo Bay, Cuba.
Photo by Robert Sabo
UNDERWAY REPLENISHMENT - Battleship IOWA - 1989
An UNREP team with 3rd Division mans the lines for the fueling rig as the USS IOWA (BB 61) receives fuel July 1989 while underway in the North Sea.
Photo by Robert Sabo

A SHIP OUT OF WATER - Battleship IOWA - 1990
Only months before decommissioning, workers proceed with repairs on Battleship IOWA in dry dock January 1990 Norfolk Naval Shipyard.
Photo by Robert Sabo
LITTLE BIG MAN – Battleship IOWA – 1988
What Mount Captain Tim Youell lacks in height he makes up in stature as the man responsible for the loading, firing and operation of one of the 5-inch gun mounts aboard Battleship IOWA (BB-61).

Photo by Robert Sabo — with Tim Youell.

HAPPY NEW YEAR 1988 - Battleship IOWA -1988
Crew members ring in the New Year of 1988 with a midnight gun-firing of the No. 3 Mark 7 16-inch/50-caliber gun turret aboard the battleship USS IOWA (BB-61) Jan 1, 1988 in the Persian Gulf.

Photo by Robert Sabo
MAIL CALL - Battleship IOWA - 1988
An SH-60B Seahawk helicopter delivers mail to Battleship IOWA in January 1988 near the United Arab Emirates in the Gulf of Oman. The Seahawk helicopter conducts anti-submarine warfare operations for the aircraft carrier USS SARATOGA (CV-60) battle group. The guided missile cruiser USS TICONDEROGA (CG-47) and other unidentified ships are in the background.
Photo by Robert Sabo

DALLAS COWBOY CHEERLEADERS - Battleship IOWA - 1987
As part of a USO show, the Dallas Cowboy Cheerleaders perform under the No. 3 Mark 7 16-inch/50-caliber gun turret aboard the battleship USS IOWA (BB-61) December 1987 in the Persian Gulf.
Photo by Robert Sabo
ANOTHER TOUR - Battleship IOWA - 1988

One hundred thirty-three crew members pose for a photo on top of the Nos. 1 and 2 Mark 7 16-inch/50-caliber gun turrets after reenlisting aboard the battleship USS IOWA (BB-61) January 16, 1988 in the Indian Ocean.

Photo to Robert Sabo
THE CRADLE - Battleship IOWA - 1989
Gunners Mate Garrett cradles a five-inch projectile inside one of the five-inch gun mounts aboard the battleship USS IOWA (BB-61) February 1989 in the Atlantic Ocean off the coast of Virginia. Photo by Robert Sabo

MORNING ON THE ST. JOHNS - Battleship IOWA - 1987
Battleship IOWA sailors man the rails as she pulls into Mayport Naval Station in Mayport, Florida. Sailors on the Aircraft Carrier Forrestal line her flight deck and watch the battleship come into port in the early morning hours in May of 1987. Photo by Robert Sabo
MISTER IOWA - Battleship IOWA - 1987

Some people on board USS Iowa (BB 61) may have called Seaman Scott Johnson a “deck ape” - but never to his face. Johnson, a 6-foot-2-inch, 230-pound body builder, was one of Iowa’s crash and salvage proximity suitmen. He was responsible for rescuing helicopter pilots in distress. Here in January of 1987 while Battleship IOWA escorted oil tankers through the Strait of Hormuz, Johnson dawns his astronaut-like silver suit that deflects high-intensity heat. Men like Johnson, referred to as “hot suitmen,” brave fires to pull people from downed helicopters. “I was picked to be a hot suitman mainly because of my size,” said Johnson, who hails from Mason City, Iowa. “It takes a big man to carry people from a helo crash.”

Johnson wasn’t naturally muscular - he’s had to work at it. Bodybuilding became an obsession with him in 1982, when, as a high school sophomore, he and some friends went to see the Mr. Iowa bodybuilding contest, held annually in Des Moines. Johnson was so impressed with the program that he decided then and there to become a body builder, with the goal of one day claiming the title of Mr. Iowa.

When he enlisted in the Navy, Johnson requested duty on board Iowa, the ship his father served on during the Korean War. Johnson spent nearly two hours each evening working out in Iowa’s weight room.

Photo by Robert Sabo
DIRTY PHONE TALKER - Battleship IOWA - 1989
Gunners Mate Lloyd Roosa talks on the phones while he and others join in an all hands effort to load gun ammunition aboard the battleship USS IOWA (BB-61) while at Whiskey Island Anchorage June 1, 1989 in Hampton Roads, Virginia.
Photo by Robert Sabo — with Lloyd Roosa.

THE CROSSING - Battleship IOWA - 1987
A silhouetted port quarter view of the guided missile cruiser USS TICONDEROGA (CG-47), right, the battleship USS IOWA (BB-61), center, and the guided missile destroyer USS DEWEY (DDG-45) underway September 17, 1987 in the Atlantic Ocean near the Azores.
Photo by Robert Sabo
THE SALTIEST DOG - Battleship IOWA - 1988

On his final day aboard, Master Chief Bobby Scott is surprised when nearly the entire ship's company lines the pier to greet him and wish him well as he departs Battleship IOWA May 1988 as she sits pier-side at Naval Station Norfolk. Scott was 18 when he enlisted in 1952 after high school in Union City, Tenn. He survived three wars, including being boat captain with the Riverine Forces in Vietnam, and he survived the near sinking of a mine sweeper that was caught in a typhoon in the 1960s. Scott said that he never liked shore duty and that if there had been anything he could have changed about his career, it would have been to spend his entire 40 years of naval service at sea.

At his retirement ceremony, he said: "As I swallow the anchor today and go ashore for the last time and fade into the civilian community, I feel good about the Navy, I feel good about the future, this ship and all ships in the U.S. Navy. It has been an honor and privilege to serve the U.S. Navy."

Less than a month after Scott's official retirement, he was killed in freak accident. As his wife drove their pickup, Scott suffered a massive head injury when he and a sheet of plywood he was trying to secure were tossed over the side of the moving vehicle.

Photo by Robert Sabo

MCPO Bobby Scott
SMOKERS - Battleship IOWA - 1988
Two shipmates battle it out while others wait to settle scores at the end of a six month cruise in the Atlantic Ocean March 1988. The boxing matches have all but disappeared in the modern Navy but once were a sanctioned method to settle heated disputes between sailors. Boxing matches, known as “smokers,” were a hotly anticipated affair. A typical smoker can be seen in this photo on the flight deck behind turret 3 on board the USS Iowa (BB 61).
Photo by Robert Sabo

AZORES - Battleship IOWA - 1987
Photo by Robert Sabo
THE MAKING OF THE GODFATHER - Battleship IOWA - 1987

Seaman Wes Burton of Battleship IOWA's Public Affairs staff pauses to reflect on life’s little ups and downs October 1987 on a busy street near Istanbul's Grand Bazaar. The Grand Bazaar, the Blue Mosque, the Egyptian Bazaar, a tour of the Bosphorus River by ferry boat and Taskim Square, to name a few, gave IOWA sailors many interesting and exotic sites to see in this city of mingling cultures. “It was definitely the most awesome port we hit,” Burton said later.

Photo by Robert Sabo — with Wes Burton.

SUMMER WHITES - Battleship IOWA - 1987

Sailors of the USS IOWA (BB 61) man the rail entering port. Manning the rail is a method of saluting or rendering honors used by naval vessels. The custom evolved from that of manning the yards, which dates from the days of sail. On sailing ships, men stood evenly spaced on all the yards (the spars holding the sails) and gave three cheers to honor distinguished persons.

Photo by Robert Sabo

VIP ARRIVAL - Battleship IOWA

SH-3 Sea King comes aboard during the Sixth Fleet Deployment.

Photo by Robert Sabo
STEAM DRUM - Battleship IOWA - 1988
Steam, the lifeblood of a battleship, gets its start in USS IOWA's steam drums. Before any work is generated, the steam passes through this chamber. IOWA boiler technician Joseph Titus Moseley uses a mechanical wire brush, powered by low-pressure air, to clean inside the tubes of a steam drum October of 1988 near the Guantanamo Bay Naval Base. Photo by Robert Sabo — with Joseph Titus Moseley.

FIREFIGHTER - Battleship IOWA - 1988
A fire at sea is the most horrifying experience for any crewman but IOWA had little to fear with men like DC2(SW) Stephen R. Rodriguez. Rodriguez was IOWA's most experienced firefighter. As a Damage Control Petty Officer and fire party leader, he battled blazes before and after they occurred. Photo by Robert Sabo
FAHRENHEIT 875 - Battleship IOWA - 1989
Boiler Technician First Class Repanshek stands watch deep in the recesses of the ship where Battleship IOWA's boilers muscle the ship through the water. USS IOWA (BB 61) was equipped with four fire rooms contained eight Babcock & Wilcox M-Type boilers operating at 600 pounds per square inch with a maximum superheater outlet temperature of 875 °F. Steam was normally transmitted to four engine rooms numbered 1 to 4. Each engine room was aft of its associated fire room. In normal steaming four boilers were operated; this was sufficient to power the ships at speeds up to 27 knots (50 km/h; 31 mph). For higher speeds, all eight boilers were lit.
Photo by Robert Sabo

NORTH SEA - Battleship IOWA - 1987
After being tossed about in heavy seas, a sailor comes out to a weather deck to get a look once large waves subside before Battleship IOWA before entering the Tondheimsfjorden October 30, 1987 to visit Trondheim, Norway.
Photo by Robert Sabo
HOPE SPRINGS ETERNAL

Battleship IOWA - 1987
Bob Hope entertains sailors of Battleship IOWA under the guns of Turret One on Christmas Day, December 25, 1987 in the Persian Gulf. While aboard the RMS Queen Mary when World War II began in September 1939, Hope volunteered to perform a special show for the passengers, during which he sang “Thanks for the Memory” with rewritten lyrics. He performed his first USO show on May 6, 1941, at March Field, California, and continued to travel and entertain troops for the rest of World War II, later during the Korean War, the Vietnam War, the third phase of the Lebanon Civil War, the latter years of the Iran–Iraq War, and the 1990–1991 Persian Gulf War. His USO career lasted half a century, during which he headlined 57 tours. He had a deep respect for the men and women who served in the military, and this was reflected in his willingness to go anywhere in order to entertain them.

Photo by Robert Sabo
Twenty-fifth annual memorial service for USS IOWA explosion
Saturday, April 19, 2014 at Iowa Point at Norfolk Naval Station in
Norfolk, VA.
All Photos by Robert Sabo
We all take pride in being battleship sailors, especially on what we consider the last class of dreadnoughts ever built. But was the Iowa class really the last dreadnoughts ever constructed? In reality, there was at least two more, conceived and built in the United States and the Soviet Union.

At about the same time as the Dreadnought battleship was introduced, the British First Sea Lord John (Jackie) Fisher also pushed the concept of the battle cruiser, a ship that was lighter, had higher speed but similar armament to the Dreadnought. They were also considered dreadnoughts in their own right because of their armament. In 1909, the British Navy fielded HMS Invincible, the first battle cruiser. It was designed to be superior to any normal cruiser then in existence. Invincible was armed with a battleship's big guns, while at the same time having a speed superior to both battleships and armored cruisers. Its role was to act as a superior scouting vessel, able to penetrate enemy cruiser screens while at the same time effectively screening her own battle force. She had secondary roles in hunting down and destroying enemy commerce raiders and in helping to reinforce the main battle line in a naval engagement.

A battle cruiser designed to be a naval vessel of the first class having great speed, carrying guns of the largest size and range and having good protection against gun fire and torpedo attack. She was designed to be capable of keeping the sea in all weather and have a maximum radius of action. Ships of this class are intended to sink an enemy and under some circumstances to lie in the main line of battle. Battle cruisers were expected to do some advance duty, but capable of taking position in line with battleships. Battle cruisers might have a displacement equal to a battleship and carry heavy guns, but have lighter armor and a speed of 22 to 31 knots (at that time).

In order to achieve the high speed necessary for the battle cruiser while carrying a sizable battery of heavy guns, the hull and machinery had to be bigger, more complicated, and more expensive than any vessel previously built. However, armor protection had to be kept to a minimum to reduce weight. Consequently, critics generally believed such a ship could not be used in a fleet action and was larger and more costly than a cruiser to carry out similar missions. Chiefly because of these criticisms, the US Navy hesitated before committing itself to building battle cruisers.

In most navies that built battle cruisers, the ship would have 4 screws when battleships generally had 3 or 2. Fisher intended the battle cruisers to serve similar functions to the scout cruiser, but be essentially invulnerable to cruiser gunfire, and able to do so even when opposed by enemy cruisers and destroyers. In addition, he recognized that a small unit of battle cruisers could perform maneuvers such as crossing the “T” of an enemy battle fleet while battleships prevented the enemy from concentrating fire on the battle cruisers.

On the eve of the Great War, it was difficult to distinguish between a battle cruiser and a battleship. A typical example was the Tiger (Great Britain) laid down in 1913. She was 725 ft. overall, 87 ft. beam, maximum draft 30 ft., displacement normal 27,000 tons, full load 31,000, complement 1,000 men, turbines of 75,000hp, speed 27 knots, coal normal 1,000 tons, maximum 3,500 plus 1,000 tons of oil. Has 8 13.5-inch guns, 16 4-inch, 2 submerged torpedo tubes on broadside and 1 at stern, 9-inch belt amidships, 4 ins. at each end. The improvement in the efficiency of the...
torpedo and the real menace of the destroyer, armed with these weapons, undoubtedly added weight to the decision for battle cruisers. The line of battle required protection from destroyer attack. An efficient protection was contained in the destruction of enemy destroyers. For this purpose great speed was necessary, also a heavy armament to destroy armored cruisers supporting destroyer attack.

The battle cruiser seemed to give the panacea desired. It can be seen then that a battle cruiser can perform many useful services: (a) control communications; (b) destroy enemy cruisers; (c) destroy enemy destroyers; (d) scout in advance of fleet; (e) support smaller scouts in getting information of enemy; (f) support own destroyers in attack on enemy battle line; (g) fight in the line of battle or against enemy battle cruisers.

By 1910 strategy and tactics divided the cruiser into several classes: battle cruiser, armored cruiser, protected cruiser, scout cruiser. The protected cruiser and armored cruiser were merely a progression toward the battle cruiser. Beginning with the first armored cruiser, there had been a persistent advance in gun power and speed and to a lesser extent in armor protection.

While the latest developments in battle cruiser design indicated a tendency to attempt to combine the powerful battery and armor protection of the battleship with the very high speeds heretofore associated only with battle cruisers, actual experience in the Great War indicated that the logical working out of such a development would result in sizes of warships which would be practically prohibitive, not only as regards cost, but as regards ability to utilize the largest existing dock facilities, inter-oceanic canal locks and a large number of the most important harbors.

The advent of battle cruisers changed the tactical environment for cruisers radically. The battle cruiser’s battleship-size guns could hit at ranges no conventional cruiser could reach, and penetrate any armor short of a battleship’s even at long range. Battle cruisers were faster than all but the fastest protected cruisers and of course the scout cruisers. If there was any possibility of meeting a battle cruiser, an armored cruiser was at severe risk.

This reality was exposed starkly by the First Battle of the Falklands, in December 1914. Apparent validation of the battle cruiser concept came early in WWI. In the First Battle of the Falklands, the superiority of the battle cruiser over the armored cruiser was clearly demonstrated. A German squadron under Admiral von Spee, centered on armored cruisers Scharnhorst and Gneisenau, was practically annihilated by two British battlecruisers, Invincible and Inflexible.

It is worthy of note that experience in actual battle
during the Great War demonstrated the efficiency of the latest type of armored protection as well as the latest type of under-water protection against damage from torpedoes and mines. A very late type of British battleship, the Marlboro, and one of the later types of German battle cruisers, the Seydlitz, received serious damage through torpedo attack during the Battle of Jutland, but remained in battle line and gave an excellent account of themselves for a considerable time thereafter. Actual results under battle conditions very largely confirmed the conservative expectations concerning these vessels held by those who design warships and those who ultimately command such vessels singly or in fleet action.

It was never intended that battle cruisers were, in classical terms, “fit to lie in the line”, i.e. to trade broadsides with an enemy capital ship. But, perhaps because of their armament and styling – they carried battleship-sized guns, looked like battleships, and were at least as large – commanders did just that with them in World War I. But, they were not designed to survive battleship gunfire, and several of them blew up at Jutland on May 31, 1916.

The US did not complete a battle cruiser until much later. While several designs were developed during World War I, and one was approved in 1916, the Navy’s bureaus absorbed the lessons of Jutland and the British Hood as the prototype of the fast battleship.

After the Great War, for international police purposes the battle cruiser seemed undoubtedly more efficient than the dreadnought, because of its higher speed and greater cruising radius. It was ships of that class that were hoped to form the backbone of the combined sea force for the preservation of peace under the League of Nations. Counting those now building by the United States, Great Britain, and Japan, in 1919 it seemed that there would be available for this purpose, if all were taken, thirty-four of these capital ships.

In the United States, the development of a battle cruiser was very turbulent, with Navy planners following the capabilities of the British Navy, while Navy leaders wrestled with the political obstacles impeding the construction of the expensive and complex new class of ships. Originally envisaged with 14-inch main guns, the US battle cruiser designs were modified during the pre-Treaty years to overmatch the HMS Hood’s 15-inch guns with 16-inch guns. HMS Hood and the US Navy design were really more akin to fast battleships. The US design had stalked the British battle cruiser designs as they moved from the lightly armored HMS Invincible, shown to be particularly vulnerable to an encounter with a battleship, to the heavily armored HMS Hood.

The six battle cruisers of the Lexington class, authorized under the 1917-1919 building programs,
were the only ships of their type ever ordered by the U.S. Navy. Intended as fast combat scouts for the battle fleet, these large ships had a prolonged development history. Their original 1916 design was to displace 34,300 tons with a main battery of ten 14-inch guns, relatively light armor and a speed of 35 knots. By 1919, the plans had been recast on the basis of World War I experience to produce larger ships armed with 16-inch guns, better protection and a slightly lower speed. The ship’s arrangement amidships, featured two very long centerline machinery spaces, each with four boiler rooms to each side and torpedo protection bulkheads outboard of the boiler rooms.

To highlight the tremendous size of the battlecruiser Saratoga, under construction at New York Shipbuilding, was the power plant with which she was to be equipped. It was turbo-electric. The ship’s boilers turned turbine generators which provided the power for the ship’s electric engines. If, for example, the Saratoga should steam into Boston Harbor and her generators should be connected with the electric circuits of that city, the 181,000 H.P. of these generators would furnish sufficient electrical power to light the city, run all of the street railway systems and supply all other needs for electricity. This huge power plant, consisting of twenty watertube boilers, four main turbines and eight generators, supplied current for the electric drive of the four propeller shafts, and provide a speed of 33.6 knots for this 44,973-ton vessel.

The Saratoga, of which the keel was laid on 25 September 1920, on the longest of the covered ways, was to have a length of 874 feet, with a beam of 105 feet, depth of 56 feet and draft of 31 feet. Her armament included eight 16-inch guns, and she was to carry a crew of 1,165.

Construction of the Lexington class ships was held up by other priorities during the First World War, and none of them were laid down until mid-1920. The following year’s naval limitations conference in Washington, DC, had these expensive battlecruisers, and their Japanese and British contemporaries, among its main targets. Following adoption of the Washington Treaty, their construction was stopped in February 1922. The treaty allowed the conversion of two of the battlecruiser hulls to the aircraft carriers Lexington (CV-2) and Saratoga (CV-3). The other four were formally cancelled in August 1923 and scrapped on their building ways.

The only class of battlecruisers actually built by the United States were the United States Navy’s Alaska-class “large cruisers”. Two of them were completed, Alaska and Guam; a third, Hawaii, was cancelled while under construction and three others, to be named Philippines, Puerto Rico and Samoa, were cancelled before they were laid down. They were classified as “large cruisers” instead of battlecruisers, and their status as non-capital ships evidenced by their being named for territories or protectorates. (Battleships, in contrast, were named after states and cruisers after cities). With a main armament of nine 12-inch guns in three triple turrets and a displacement of 27,000 long tons (27,000 t), the Alaskas were twice the size of Baltimore-class cruisers and had guns some 50% larger in diameter. They lacked the thick armoured belt and intricate torpedo defence system of true capital ships. However, unlike most battlecruisers, they were considered a balanced design according to cruiser standards as their protection could withstand fire from their own caliber of gun, albeit only in a very narrow range band. They were designed to hunt down Japanese heavy cruisers, though by the time they entered service most Japanese cruisers had been sunk by American aircraft or
submarines. Like the contemporary Iowa-class fast battleships, their speed ultimately made them more useful as carrier escorts and bombardment ships than as the surface combatants they were developed to be.

The six Alaska class “large cruisers” were ordered in September 1940 under the massive 70% Expansion (“Two Ocean Navy”) building program. Although listed as “Large Cruisers,” they were designed along the same principals as Fischer’s battle cruisers – fast, maneuverable and heavily armed. The Navy had been considering since 1938 building ships of this entirely new type, intermediate in size between battleships and heavy cruisers. The new ships were to carry out what were then the two primary missions of heavy cruisers: protecting carrier strike groups against enemy cruisers and aircraft and operating independently against enemy surface forces. Their extra size and larger guns would enhance their value in both these missions and would also provide insurance against reports that Japan was building “super cruisers” more powerful than U.S. heavy cruisers. In fact, Japan developed plans for two such ships in 1941 -- partly as a response to the Alaskas -- but never placed orders for their construction.

As built, the Alaskas lacked the multiple layers of compartmentation and special armor along the sides below the waterline that protected battleships against torpedoes and underwater hits by gunfire. Other features in their design were the provision of aircraft hangars and the single large rudder. Unlike other U.S. cruisers of the day, the hangars and catapults were located amidships, and the single rudder made them difficult to maneuver. On the other hand, the Alaskas’ side armor covered more of the hull than was standard in contemporary U.S. cruisers.

Wartime conditions ultimately reduced the Alaska class to two ships. Construction of CB-3 through CB-6--along with the five Montana (BB-67) class battleships--was suspended in May 1942 to free up steel and other resources for more urgently needed escorts and landing craft. A year later, CB-4 through CB-6 were definitively cancelled. Hawaii (CB-3), however, was restored to the building program. Launched and partially fitted out, her construction was suspended and she was considered for conversion to a missile ship or command ship, but she was scrapped, still
incomplete, in 1959.

After more normal construction periods, Alaska (CB-1) and Guam (CB-2) both arrived in the Pacific theater ready for action in early 1945. There they carried out both of their designed missions—carrier protection and surface strike—although their chances of encountering their primary intended opponents, Japanese heavy cruisers, had long since disappeared. Both returned to the U.S. soon after the war’s end and, not finding a place in the postwar active fleet, remained in reserve until scrapped in 1960-61.

Due to being commissioned late in the war, the Alaskas saw relatively limited service. Alaska participated in operations off Iwo Jima and Okinawa in February–July 1945, including providing anti-aircraft defense for various carrier task forces and conducting limited shore bombardment operations. USS Alaska shot down several Japanese aircraft off Okinawa, including a possible Ohka piloted rocket-bomb. In July–August 1945 they participated in sweeps for Japanese shipping in the East China and Yellow Seas. After the end of the war, they assisted in the occupation of Korea and transported a contingent of US Army troops back to the United States. The Alaskas were decommissioned in 1947 and placed in reserve, where they remained until she was stricken and sold for scrapping.

The ships were 808 feet 6 inches long overall and had a beam of 91 feet 1 in and a draft of 31 feet 10 in. They displaced 29,779 long tons as designed and up to 34,253 long tons at full combat load. The ships were powered by four-shaft General Electric geared steam turbines and eight oil-fired Babcock & Wilcox boilers rated at 150,000 shaft horsepower, generating a top speed of 33 knots. The ships had a cruising range of 12,000 nautical miles (22,000 km; 14,000 mi) at a speed of 15kts. She carried four OS2U Kingfisher or SC Seahawk seaplanes, with a pair of steam catapults mounted amidships.

The ships were armed with a main battery of nine 12 inch L/50 Mark 8 guns in three triple gun turrets, two in a superfiring pair forward and one aft of the superstructure. The secondary battery consisted of twelve 5-inch L/38 dual-purpose guns in six twin turrets. Two were placed on the centerline superfiring over the main battery turrets, fore and aft, and the remaining four turrets were placed on the corners of the superstructure. The light anti-aircraft battery consisted of 56 quad-mounted 40 mm Bofors guns and 34 single-mounted 20 mm Oerlikon guns. A pair of Mk 34 gun directors aided gun laying for the main battery, while two Mk 37 directors controlled the 5-inch guns and a Mk 57 director aided the 40 mm guns. The main armored belt was 9 in (229 mm) thick, while the gun turrets had 12.8 in (325 mm) thick faces. The main armored deck was 4 in (102 mm) thick.

In the course of her service during World War II, Alaska was awarded three battle stars. On 30 August Alaska left Okinawa for Japan to participate in the 7th Fleet occupation force. She arrived in Incheon, Korea on 8 September and supported Army operations there until 26 September, when she left for Tsingtao, China, arriving the following day. There, she supported the 6th Marine Division until 13 November, when
she returned to Incheon to take on Army soldiers as part of Operation Magic Carpet, the mass repatriation of millions of American servicemen from Asia and Europe. Alaska left Incheon with a contingent of soldiers bound for San Francisco. After reaching San Francisco, she left for the Atlantic, via the Panama Canal, which she transited on 13 December. The ship arrived in the Boston Navy Yard on 18 December, where preparations were made to place the ship in reserve. She left Boston on 1 February 1946, for Bayonne, New Jersey, where she would be berthed in reserve. She arrived there the following day, and on 13 August, she was removed from active service, though she would not be decommissioned until 17 February 1947.

USS Guam left Philadelphia on 17 January 1945, after completing her shakedown cruise off Trinidad. She proceeded through the Panama Canal to join the United States Pacific Fleet in Pearl Harbor, which she reached on 8 February. On 3 March, she departed Hawaii for Ulithi, where she joined her sister Alaska on 13 March. Shortly thereafter, Guam and the rest of Task Force 58, the main strike force of the US Navy under the command of Admiral Arthur W. Radford, departed for a raid on the mainland Japanese islands of Kyushu and Shikoku. Task Force 58 arrived off Japan on the morning of 18 March and was quickly attacked by Japanese kamikazes and bombers. Guam was detached from the unit to escort the badly damaged carrier Franklin back to port, which lasted until 22 March.

Guam then returned to Task Force 58, assigned to Cruiser Division 16, part of Task Group 58.4, and steamed to Okinawa. On the night of 27–28 March, Guam and the rest of Cruiser Division 16 bombarded the airfield on Minamidaitō. After concluding the bombardment, Guam returned to the carrier screen while they conducted operations off Nansei Shoto until 11 May. The ship then steamed to Ulithi for periodic maintenance and to replenish ammunition and supplies. She then returned to Okinawa, assigned to Task Group 38.4 of William Halsey’s Third Fleet. She continued to provide anti-aircraft defense for the carriers while they launched fighter sweeps of Kyushu. Guam and Alaska bombarded Oki Daitō for an hour and a half on 9 June, after which they steamed to San Pedro Bay in the Leyte Gulf, arriving on 13 June.

After returning to Okinawa in July, Guam was assigned to Cruiser Task Force 95, where she served as the flagship, along with her sister Alaska, under the command of Rear Admiral Francis S. Low. On 16 July, Guam and Alaska conducted a sweep into the East China and Yellow Seas to sink Japanese shipping. They had only limited success, however, and returned to the fleet on 23 July. They then joined a major raid, which included three battleships and three escort carriers, into the estuary of the Yangtze River off Shanghai. Again, the operation met with limited success, and they returned to Okinawa by 7 August.

Shortly after returning to Okinawa, Guam became the flagship of the North China Force, again commanded by Rear Admiral Low. The unit was tasked with showing the flag in the region, including the ports of Tsingtao, Port Arthur, and Dalian.

On 8 September, Guam entered Jinsen, Korea, to assist in the occupation of the country. She left Jinsen on 14 November bound for San Francisco, carrying a group of Army soldiers back to the United States. She arrived in port on 3 December and departed two days later for Bayonne, New Jersey, arriving on the 17th. She remained there until she was decommissioned on
17 February 1947.

She was then assigned to the Atlantic Reserve Fleet, where she remained until she was stricken from the Navy List on 1 June 1960. She was sold on 24 May 1961 for $423,076 to the Boston Metals Company in Baltimore. She was towed to the shipbreakers on 10 July 1961. Guam had served only 29 months on active duty. In the course of her career, she received two battle stars for her service during World War II.

In 1958, the Bureau of Ships prepared two feasibility studies to see if Alaska and Guam were suitable to be converted to guided missile cruisers. The first study involved removing all of the guns in favor of four different missile systems. At $160 million this was seen as too costly, so a second study was conducted. This study left the forward batteries—the two 12” triple turrets and three of the 5” dual turrets—in place and added a reduced version of the first plan for the aft. This would have cost $82 million, and was still seen as too cost-prohibitive. As a result, the conversion proposal was abandoned and the ships were instead stricken from the naval registry on 1 June 1960.

In spite of the fact that after World War II, most navies abandoned the battleship and battlecruiser concepts, Joseph Stalin’s fondness for big-gun-armed warships caused the Soviet Union to plan a large cruiser class in the late 1940s. In the Soviet Union they were termed “heavy cruisers.” The fruits of this program were the Project 82 (Stalingrad) cruisers, of 36,500 tonnes (35,900 long tons) standard load, nine 12” guns and a speed of 35 knots. Three ships were laid down in 1951–52, but they were cancelled in April 1953 after Stalin’s death. Only the central armoured hull section of the first ship, Stalingrad, was launched in 1954 and then used as a target.

The Soviet Kirov class is sometimes referenced as a battlecruiser. This classification arises from their over 24,000-tonne (24,000-long-ton) displacement, which is roughly equal to that of a First World War battleship and more than twice the displacement of contemporary cruisers. The Kirov class lacks the armour that distinguishes battlecruisers from ordinary cruisers and they are classified as Tyazholyy Atomnyy Raketyny Kreyser (Heavy Nuclear-powered Missile Cruiser) by Russia. Four members of the class were completed during the 1980s and 1990s, but due to budget constraints only the Petr Velikiy is operational with the Russian Navy, though plans were announced in 2010 to return the other three ships to service. As of 2012 one ship was being refitted, but the other two ships are reportedly beyond economical repair.
ARLINGTON, Va. (NNS) -- Navy engineers are making final adjustments to a laser weapon prototype that will be the first of its kind to deploy aboard a ship late this summer.

The prototype, an improved version of the Laser Weapon System (LaWS), will be installed on USS Ponce for at-sea testing in the Persian Gulf, fulfilling plans announced by Chief of Naval Operations Adm. Jonathan Greenert at the 2013 Sea-Air-Space Expo.

“This is a revolutionary capability,” said Chief of Naval Research Rear Adm. Matthew Klunder. “It’s absolutely critical that we get this out to sea with our Sailors for these trials, because this very affordable technology is going to change the way we fight and save lives.”

Navy leaders have made directed-energy weapons a top priority to counter what they call asymmetric threats, including unmanned and light aircraft and small attack boats that could be used to deny U.S. forces access to certain areas. High-energy lasers offer an affordable and safe way to target these threats at the speed of light with extreme precision and an unlimited magazine, experts say.

“Our nation’s adversaries are pursuing a variety of ways to try and restrict our freedom to operate,” Klunder said. “Spending about $1 per shot of a directed-energy source that never runs out gives us an alternative to firing costly munitions at inexpensive threats.”

Klunder leads the Office of Naval Research (ONR), which has worked with the Naval Sea Systems Command, Naval Research Laboratory, Naval Surface Warfare Center Dahlgren Division and others to make powerful directed-energy weapons a reality.

The Navy already has demonstrated the effectiveness of lasers in a variety of maritime settings. In a 2011 demonstration, a laser was used to defeat multiple small boat threats from a destroyer. In 2012, LaWS downed several unmanned aircraft in tests.

Over the past several months, working under the ONR Quick Reaction Capability program, a team of Navy engineers and scientists have upgraded LaWS, and proved that targets tracked with a Phalanx Close-In Weapon can be easily handed over to the laser’s targeting and tracking system. The result is a weapon system with a single laser weapon control console, manned by a surface warfare weapons officer aboard USS Ponce who can operate all functions of the laser—and if commanded, fire the laser weapon.

Using a video game-like controller, that sailor will be able to manage the laser’s power to accomplish a range of effects against a threat, from disabling to complete destruction.
The deployment on Ponce will prove crucial as the Navy continues its push to provide laser weapons to the fleet at large.

Data regarding accuracy, lethality and other factors from the Ponce deployment will guide the development of even more capable weapons under ONR’s Solid-State Laser - Technology Maturation program. Under this program, industry teams led by Northrop Grumman, BAE Systems and Raytheon Corp. have been selected to develop cost-effective, combat-ready laser prototypes that could be installed on vessels such as guided-missile destroyers and the Littoral Combat Ship in 2016.

The Navy will decide next year which, if any, of the three industry prototypes are suitable to move forward and begin initial ship installation for further testing.

“We are in the midst of a pivotal transition with a technology that will keep our Sailors and Marines safe and well-defended for years to come,” said Peter Morrison, ONR program manager for SSL-TM. “We believe the deployment on Ponce and SSL-TM will pave the way for a future acquisition program of record so we can provide this capability across the fleet.”

Mess Management Specialists Transform into Culinary Specialist

NEWPORT NEWS, Va. (NNS) -- The Navy has changed the mess management specialist (MS) rating to culinary specialist (CS) in an effort to better describe the rating’s profession. Sailors in the MS rating were automatically converted to the CS rating and kept their current rating badge, according to Naval Administration Message 012/04.

The rating’s name has changed several times over its long history. Originally named cook, the rate changed to commissaryman in 1948. The title switched again in 1975 to mess management specialist. This year’s change to culinary specialist keeps the occupation’s definition current with today’s civilian counterpart.

“The term culinary specialist is easier for people to relate to,” said Senior Chief Culinary Specialist David Robertson, assistant food service officer aboard USS Ronald Reagan (CVN 76). “It’s more up to date.”

“The change was long overdue and offers multiple advantages,” said Robertson. “The new term holds more value and can be used as an excellent recruiting tool.”

“It will take time for some of the crew members to adjust to the new name, but being known as a culinary specialist is a good thing,” said Culinary Specialist 3rd Class Roosevelt Roberts, Food Service Division. “It’s better because mess specialist sounds like...”
we're making a mess, but we actually work very hard and are good at what we do.”

Working hard on the mess decks is important; however, CSs agree attending culinary school is the key to keeping their skills up to date.

“The Navy offers Sailors in the CS rating an opportunity to attend culinary schools,” said Robertson. “Skills acquired while attending these schools are being implemented and revamped consistently to improve quality of life.”

When Sailors are unable to attend culinary school, the Navy brings the training to them. The Chef-at-Sea program brings a professional chef aboard during underway periods. Executive Chef Darryl Espinosa is the Ronald Reagan Chef-at-Sea representative.

Espinosa trains the crew in new trends affecting the culinary community and offers several workshops aboard the ship to discuss what support nets are available to Sailors during their Navy career.

“The conversion from MS to CS should instill extra pride in these Sailors,” said Espinosa. “Culinary is a more accepted term within the field and will add distinction.”

According to Culinary Specialist 3rd Class Joseph Beezhold, Food Service Division, Ronald Reagan Sailors are dedicated to their work and their fellow shipmates, regardless of change.

“Sure the name has changed, but we still do the same job,” said Beezhold. No matter what we’re called, we’re going to keep doing what we do...keeping the crew happy.”

More often than not, the complaints came after the second helping of roast beef, mashed potatoes, green peas, chef’s salad and apple pie a la mode.

In today’s Navy, the occasions when such complaints have some foundation are far outweighed by the many other meals consumed, but in the sea service of 200 years ago if a sailor complained about the food, he would probably have had good reason. Sea duty in those days meant sleeping in hammocks, steering by the stars and eating food sometimes moldy, sometimes rancid, sometimes overage, sometimes all three.

Uncle Sam’s early Navy was a career for strong men and it needed strong men with hearty appetites to relish the diet common to life at sea in the days of sail. Food issued to the American Revolutionary sailor might consist of ship's biscuits that were as hard as rocks and often inhabited by weevils, a portion of salt pork, some dried peas and water.

By the early 19th century a permanent federal Navy had been established, but the chow had not yet improved substantially. A ration law outlining the amount, kind and the days on which certain foods were to be served had been approved by Congress. Owing to a lack of preservatives other than salt and brine, and a paucity of funds, only a limited variety of foods was authorized. Those foods were generally bland and somewhat unpalatable.

A seaman’s typical daily ration consisted of 1 lb. of hard bread, 1 1/2 pounds of salt pork or beef, 1/2 pound of dried beans or rice and a quart of beer or a half-pint of rum. On Fridays he received salt fish in-
stead of beef and Wednesdays were meatless days with two ounces of cheese as a substitute. Vegetables deteriorated quickly at sea, but when they were available, the ration included a few potatoes or turnips on Tuesdays.

In those days, the crew was divided into groups of 20 men, each called “berth deck messes.” Each mess elected its own cook-culinary expertise seldom determined the outcome of elections. The job required no particular cooking skills but did entail washing dishes after each meal. Dirty dishes were dunked in a bucket of cold, greasy seawater and left on the open deck to air-dry.

In spite of the limited variety of food and the poor preparation facilities-usually a sandbox holding hot coals and an iron kettle-the old-time cooks were quite skillful in creating edible meals. One favorite treat at sea was called “cracker hash.” It was made from broken-up hard bread, any vegetables that could be cumshawed and salt pork. Another favorite, “plum duff,” consisted of flour, molasses and raisins (raisins helped hide the weevils in old flour)-ingredients seldom available.

When the first ration bill passed in 1794, Congress didn’t foresee the establishment of a permanent Navy. They had authorized the building of six ships to combat Algerian pirates attacking American merchant ships off North Africa. They authorized 28 cents per day for the purchase of food for each sailor.

By 1801, the pirates had been subdued, but the sea service was not demobilized: instead, it was reduced to a peacetime establishment. A ration was established which substantially reduced the allowance of bread and meat. Friday, for example, became a day of short rations, called Banyan Day after the Hindu caste which abstains from meat. It was not until 1818 that a new ration was authorized.

This ration still lacked variety and continued to specify days on which certain foods could be served. In 1842, the ideas of a fixed allowance for each day was discarded and a more flexible allotment of specified items and substitutes was authorized. The run and beer rations were taken away from commissioned officers and midshipmen, but continued for the crew; those underage 21 and unable to drink received a few pennies additional in their pay.

In Sept 1862 the spirit ration was discontinued for all and in its place the men received a stipend equal to five cents per day. This legislation prompted the old refrain, “THEY RAISED OUR PAY-FIVE CENTS A DAY-AND TOOK AWAY-OUR GROG FOREVER.”

The Civil War brought other changes to the Navy but the rations remained unchanged until 1906. At that time, a special ration was provided-forerunner of midrats-for all night watch-standers.

Other major changes included the abolition of the berth-messing arrangement and the birth of the general messing system. The feeding of the entire crew in a common mess was introduced and this change led to better food and improved morale along with distinctly more healthful conditions at mealtime.

Combining ration funds made it possible to vary the Navy diet, basically unchanged since the 18th century. For the first time, veal, lamb, sausage and fresh vegetables were authorized aboard ship.

With centralized cooking and serving came joint-effort cleaning of the messing areas. Grease film or food particles on utensils and dishes became unacceptable due to tighter cleanliness regulations.

The first standard Navy cookbook was written by a Navy paymaster (forerunner of the supply officer) and replaced an old guide used by all services. The old cookbook contained such advice as; “The presence of wormholes in coffee should not occasion its rejection....since they generally indicate age, weigh nothing and disappear when the coffee is ground.

Due to early 20th century discoveries of better ways to preserve food and modern means to freeze it, food...
quality aboard ship improved greatly. Between WW I and WW II, there was a strong demand by sailors for a diet consisting of more vegetable, fruits and milk.

In 1942 additional sources of vitamins were added to the Navy ration without any revision of the ration bill. Vegetables and fruit juices-fresh, canned and concentrated-flour enriched with vitamin B1, niacin and iron, and enriched yeast were added to the daily menu. Combat rations, survival rations and other special type subsistence designed to feed fighting men under extreme conditions also were introduced during this period. As the war became a long-range proposition both in terms of distance and duration, the Navy strove to provide nourishing foods to keep sailors well fed and at the same time, eliminate the need for frequent underway replenishments.

Between 1945 and 1960, technological advances in all areas of naval operations were tremendous. Sophisticated electronic equipment and highly complicated weapons systems demanding constant alertness and longer span of attention prompted nutritionists to devise better diets and test recipes for all foods served in Navy dining facilities. The foods had to sustain personnel under strenuous and often tedious operational environments.

The Navy turned its attention to developments in food preparation, handling and processing as never before. Many new types of food-processed in ways never before tried-helped alleviate crowded storage conditions and greater emphasis was placed on developing better ration-dense foods. These staples consisted of concentrated, dehydrated, compressed, precooked and frozen foods. All bones, pits, peelings and trimmings are pruned before storage aboard so that only edible portions remain.

Galleys and sculleries were modernized. In the scullery, mechanical dishwashers, sterilizers and other sanitation equipment replaced the old “dunk and dry” system forever.

The Navy Food Service Systems Office, which falls under the Naval Supply Systems Command in today’s Navy hierarchy, experimented with revolutionary ideas for food preparation and preservation. Military service research in this area led to development of space age freeze-dried foods for consumption by shipboard diners as well as astronauts.

From 1960 to the present, the Navy has continued its efforts into better ways to produce, package, store and prepare food served in its dining facilities. The Armed Forces Recipe Service (a joint service recipe supplier) now provides the sea service with ideas for more than 1300 recipes guaranteed to please the palate of any salt. In addition to food research, the services recognized the correlation between good groceries eaten in pleasant surroundings and increased job efficiency. Consequently, they are con-
stantly looking for ways to improve the atmosphere of the dining area.

The drab-colored, austere dining areas of the pre-Vietnam era have disappeared. Today one usually dines in an area that has piped-in background music, carpets, murals, paneled bulkheads, and a touch of home-tablecloths. In many facilities, civilian mess attendants clear away dishes, further enhancing a restaurant-like atmosphere.

Food choices have been expanded to cater to contemporary lifestyles. Many shore facilities have added speed-lines for those preferring short-order items to standard meals. Aboard ship, cookouts are often held on the fantail. These usually feature baked beans, barbecued chicken or hot dogs and hamburgers— all served in a relaxing atmosphere.

Other foods seldom seen in the galleys of the “Old Navy,” but reflecting the younger generation’s tastes, are appearing more frequently— fish and chips, chicken in a basket, pizza, etc. Many sailors are introduced to expertly prepared ethnic foods; on special nights the evening chow features foods of minority groups such as taco on Mexican Night, lasagna on Italian Night and chitterlings on Soul Night. On these occasions the dining facility is often decorated in an appropriate motif.

No longer does chow go down at the regularly appointed time on weekends or holidays. Today most bases and ships serve brunch from early morning to lunchtime. Still the early birds can get their ham and eggs and a wholesome lunch as on other days.

Navy food has come a long way since the days of cracker hash and salt pork; the Navy is striving to be the best feeder in the volunteer force and the emphasis is on habitability. Ideas for improvements are welcomed and most messes have installed suggestion boxes to solicit constructive comments. Today’s modern ideas about food service are due in large part to input from the fleet.

Chow has progressed from hard tack and beef jerky to hot rolls and sirloin steak, yet this is not the end of improvements.

Letter from the Editor

Special thanks to Bob Richards who shared his slides for the newsletter. I hope you all are enjoying the stories from former shipmates and a little history thrown in as well.

Future articles include information about the ship, and more Medal of Honor recipients.

If you have anything you would like to share with our shipmates and friends, please send it in. It may take some time to get it in the newsletter, but we’ll get it in for all to see.

Send your works to:
Brad Goforth, 1200 Somersby Lane,
Matthews, NC 28105
or email it to: bgoforth@thesamaritanhouse.org

Brad Goforth

Disclaimer:

The Iowan History Letter is an independent online magazine, and produced as a keepsake journal for Battleship Iowa museum volunteers, former crewmen of USS Iowa, and for our readers. The Iowan History Letter is not sold, subscriptions are not offered, and all credited photos, cartoons and stories are the sole property of their authors. Wherever possible, The Iowan History Letter requests permission, properly credits, and identifies the source of photographs, stories, or quotations. If crediting errors, or any possible copyright infringements are found, please let us know and corrections will be made.